
ECE 604, Lecture 12

October 4, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Transmission Line Theory

• Lossy Transmission Lines

Additional Reading:

• ECE350X lecture notes 5. https://engineering.purdue.edu/wcchew/ece350.html

• Sections 5.1, 5.2, 5.3, Ramo, Whinnery, and Van Duzer.

Printed on October 10, 2018 at 15 : 16: W.C. Chew and D. Jiao.
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2 Transmission Line Theory

Figure 1:

Transmission lines were the first electromagnetic waveguides ever invented. The
were driven by the need in telegraphy technology. It is best to introduce trans-
mission line theory from the viewpoint of circuit theory.

Circuit theory is robust and is not sensitive to the detail shapes of the com-
ponents involved such as capacitors or inductors. Moreover, many transmission
line problems cannot be analyzed with the full form of Maxwell’s equations,1

but approximate solutions can be obtained using circuit theory in the long-
wavelength limit.

Examples of transmission lines are shown in Figure 1. The symbol for a
transmission line is usually represented by two pieces of parallel wires, but in
practice, these wires need not be parallel.

1Usually called full-wave analysis.
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Figure 2: Courtesy of slides by A. Wadhwa, A.L. Dal, N. Malhotra.

Circuit theory also explains why waveguides can be made sloppily when
wavelength is long or the frequency low. For instance, in the long-wavelength
limit, we can make twisted-pair waveguides with abandon, and they still work
well. Hence, we shall first explain the propagation of electromagnetic signal on
a transmission line using circuit analysis.

Remember that two pieces of metal can accumulate attractive charges be-
tween them, giving rise to capacitive coupling, electric field, and hence stored
energy in the electric field. Moreover, a piece of wire carrying a current gener-
ates a magnetic field, and hence, yielding stored energy in the magnetic field.
These stored energies are the sources of the capacitive and inductive effects.
But these capacitive and inductive effects are distributed over the spatial di-
mension of the transmission line. Therefore, it is helpful to think of the two
pieces of metal as consisting of small segments of metal connected together.
Each of this segment will have a small inductance, as well as a small capacitive
coupling between them. Hence, we can model two pieces of metal with a dis-
tributed lumped element model as shown in Figure 3.For simplicity, we assume
the other conductor to be a ground plane, so that it need not be approximated
with lumped elements.

In the transmission line, the voltage V (z, t) and I(z, t) are functions of both
space z and time t, but we will model the space variation of the voltage and
current with discrete step approximation. The voltage varies from node to node
while the current varies from branch to branch of the lump-element model.
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Figure 3:

First, we recall that the I-V relation of an inductor is

V0 = L0
dI0
dt

(2.1)

where L0 is the inductor, V0 is the time-varying voltage drop across the inductor,
and I0 is the current through the inductor. Then using this relation between
node 1 and node 2, we have

V − (V + ∆V ) = L∆z
∂I

∂t
(2.2)

The left-hand side is the voltage drop across the inductor, while the right-hand
side follows from the aforementioned V-I relation of an inductor, but we have
replaced L0 = L∆z. Here, L is the inductance per unit length (line inductance)
of the transmission line. Here, L∆z is the incremental inductance due to the
small segment of metal of length ∆z. Then the above can be simplified to

∆V = −L∆z
∂I

∂t
(2.3)

Next, we make use of the V-I relation for a capacitor, which is

I0 = C0
dV0
dt

(2.4)

where C0 is the capacitor, I0 is the current through the capacitor, and V0 is a
time-varying voltage drop across the capacitor. Thus, applying this relation at
node 2, one gets

−∆I = C∆z
∂

∂t
(V + ∆V ) ≈ C∆z

∂V

∂t
(2.5)

where C is the capacitance per unit length, and C∆z is the incremental capac-
itance between the small piece of metal and the ground plane. In the above,

4



we have used Kirchhoff current law to surmise that the current through the
capacitor is −∆I, where ∆I = I(z + ∆z, t)− I(z, t). In the last approximation
in (2.5), we have dropped a term involving the product of ∆z and ∆V , since it
will be very small or second order in magnitude.

In the limit when ∆z → 0, one gets from (2.3) and (2.5) that

∂V (z, t)

∂z
= −L∂I(z, t)

∂t
(2.6)

∂I(z, t)

∂z
= −C ∂V (z, t)

∂t
(2.7)

The above are the telegrapher’s equations. They are two coupled first-order
equations, and can be converted into second-order equations easily. Therefore,

∂2V

∂z2
− LC ∂

2V

∂t2
= 0 (2.8)

∂2I

∂z2
− LC ∂

2I

∂t2
= 0 (2.9)

The above are wave equations that we have previously studied, where the ve-
locity of the wave is given by

v =
1√
LC

(2.10)

Furthermore, if we assume that

V (z, t) = f+(z − vt) (2.11)

a right-traveling wave, and substituting it into (2.6) yields

−L∂I
∂t

= f ′+(z − vt) (2.12)

or that

I =
1

Lv
f+(z − vt) =

√
C

L
f+(z − vt) (2.13)

Consequently,

V (z, t)

I(z, t)
=

√
L

C
= Z0 (2.14)

where Z0 is the characteristic impedance of the transmission line. The above
ratio is only true for one-way traveling wave, in this case, one that propagates
in the +z direction.

For a wave that travels in the negative z direction, i.e.,

V (z, t) = f−(z + vt) (2.15)

with the corresponding I(z, t) derived, one can show that

V (z, t)

I(z, t)
= −

√
L

C
= −Z0 (2.16)

5



2.1 The Time-Harmonic Case

For a time-harmonic signal on a transmission line, one can analyze the problem
in the frequency domain using phasor technique. The telegrapher’s equations
(2.6) and (2.7) then become

d

dz
V (z, ω) = −jωLI(z, ω) (2.17)

d

dz
I(z, ω) = −jωCV (z, ω) (2.18)

The corresponding Helmholtz equations are then

d2V

dz2
+ ω2LCV = 0 (2.19)

d2I

dz2
+ ω2LCI = 0 (2.20)

The general solutions to the above are

V (z) = V+e
−jβz + V−e

jβz (2.21)

I(z) = I+e
−jβz + I−e

jβz (2.22)

where β = ω
√
LC. This is similar to what we have seen previously for plane

waves in the one-dimensional wave equation in free space, where

Ex(z) = E0+e
−jk0z + E0−e

jk0z (2.23)

where k0 = ω
√
µ0ε0. We see a much similarity between (2.21), (2.22), and

(2.23).
To see the solution in the time domain, we let V± = |V±|ejφ± , and the

voltage signal above can be converted back to the time domain as

V (z, t) = <e{V (z, ω)ejωt} (2.24)

= |V+| cos(ωt− βz + φ+) + |V−| cos(ωt+ βz + φ−) (2.25)

As can be seen, the first term corresponds to a right-traveling wave, while the
second term is a left-traveling wave.

Furthermore, if we assume only a one-way traveling wave to the right by
letting V− = I− = 0, then it can be shown that, for a right-traveling wave

V (z)

I(z)
=
V+
I+

=

√
L

C
= Z0 (2.26)

For a left-traveling wave only, by letting V+ = I+ = 0, then

V (z)

I(z)
=
V−
I−

= −
√
L

C
= −Z0 (2.27)
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3 Lossy Transmission Line

Figure 4:

The above analysis, which is valid for lossless transmission line, can be easily
generalized to the lossy case. It is best to use frequency domain and phasor
technique, since impedances and complex numbers will be involved.

To include loss, we use the lumped-element model as shown in Figure 4. One
thing to note is that jωL is actually the series line impedance of the transmission
line, while jωC is the shunt line admittance of the line.

First, we can rewrite the expressions for the telegrapher’s equations in (2.17)
and (2.18) in terms of series line impedance and shunt line admittance to arrive
at

d

dz
V = −ZI (3.1)

d

dz
I = −Y V (3.2)

where Z = jωL and Y = jωC.
The geometry in Figure 4 is homomorphic2 to the lossless case in Figure 3.

Hence, when lossy elements are added in the geometry, we can surmise that the
corresponding telegrapher’s equations are similar to those above. But to include
loss, we generalize the series line impedance to

Z = jωL+R (3.3)

and the shunt line admittance to

Y = jωC +G (3.4)

where R is the series line resistance, and G is the shunt line conductance. Then,
the corresponding Helmholtz equations are

d2V

dz2
− ZY V = 0 (3.5)

d2I

dz2
− ZY I = 0 (3.6)

2A math term for “similar in structure”. The term is even used in computer science
describing a emerging field of homomorphic computing.
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or

d2V

dz2
− γ2V = 0 (3.7)

d2I

dz2
− γ2I = 0 (3.8)

where γ2 = ZY . The above are second order one-dimensional Helmholtz equa-
tions where the general solutions are

V (z) = V+e
−γz + V−e

γz (3.9)

I(z) = I+e
−γz + I−e

γz (3.10)

where

γ =
√
ZY =

√
(jωL+R)(jωC +G) = α+ jβ (3.11)

Or focusing on the voltage case,

V (z) = V+e
−αz−jβz + V−e

−αz+jβz (3.12)

Again, letting V± = |V±|ejφ± , the above can be converted back to the time
domain as

V (z, t) = <e{V (z, ω)ejωt} (3.13)

= |V+|e−αz cos(ωt− βz + φ+) + |V−|eαz cos(ωt+ βz + φ−) (3.14)

The first term corresponds to a decaying wave moving to the right while the
second term is also a decaying wave moving to the left. When there is no loss,
or R = G = 0, and from (3.11), we retrieve the lossless case where α = 0 and
γ = jβ = jω

√
LC. Notice that for the lossy case, the characteristic impedance,

which is the ratio of the voltage to the current for a one-way wave, can be
derived to be

Z0 =

√
Z

Y
=

√
jωL+R

jωC +G
(3.15)

In the absence of loss, the above becomes

Z0 =

√
L

C
(3.16)

the characteristic impedance for the lossless case previously derived. In general,
even for the lossy case,

V+
I+

= −V−
I−

= Z0 =

√
Z

Y
(3.17)
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